Triangulation: Find the convex hull Jarvis March (Gift wrapping)
This commit is contained in:
parent
9d66afaaca
commit
8df43af3e6
@ -1,57 +1,7 @@
|
||||
#+TEST: [[file:Geometry][Geometry]]
|
||||
|
||||
* Quadtree
|
||||
Recursively subdivide an AABB into 4 regions, hence Quad. They are usually
|
||||
denoted as North West, North East, South West, and South East (NW, NE, SW, SE).
|
||||
Several things can be created with this;
|
||||
** Linked Implementation :datastructure:
|
||||
** Array Implementation :datastructure:
|
||||
** Insertion :algorithm:
|
||||
** Query :algorithm:
|
||||
** Find Nearest Neighbor :algorithm:
|
||||
* Triangulation
|
||||
Generate triangles from points
|
||||
** Convex Hull Jarvis March (Gift wrapping) :algorithm:
|
||||
** Resources
|
||||
[[http://ericandrewlewis.github.io/how-a-quadtree-works/][Visualize a Quadtree]]
|
||||
[[http://donar.umiacs.umd.edu/quadtree/][Academic Interactive Demo]]
|
||||
** Notes
|
||||
// exclude node if point is farther away than best distance in either axis
|
||||
if (x < x1 - best.d || x > x2 + best.d || y < y1 - best.d || y > y2 + best.d) {
|
||||
return best;
|
||||
}
|
||||
|
||||
|
||||
I don't know how to explain but I get it. Because of the euclidian distance and the fact that we're dealing with rectangles, the closest distance to a rectangle is a straight line in one of the x or y axis
|
||||
So if the point we're checking is farther away from the rectangle on either axis, then it cannot possible be the case that it is closer
|
||||
I still can't visualize or understand it intuitively, I more just trust that it works, maybe if I see it in action it'll click better
|
||||
JosephFerano
|
||||
—
|
||||
Today at 4:15 PM
|
||||
This is some clever math shit this guy is doing
|
||||
Or that he picked up
|
||||
https://gist.github.com/patricksurry/6478178
|
||||
Gist
|
||||
D3JS quadtree nearest neighbor algorithm
|
||||
D3JS quadtree nearest neighbor algorithm. GitHub Gist: instantly share code, notes, and snippets.
|
||||
D3JS quadtree nearest neighbor algorithm
|
||||
|
||||
// check if kid is on the right or left, and top or bottom
|
||||
// and then recurse on most likely kids first, so we quickly find a
|
||||
// nearby point and then exclude many larger rectangles later
|
||||
var kids = node.nodes;
|
||||
var rl = (2*x > x1 + x2), bt = (2*y > y1 + y2);
|
||||
if (kids[bt*2+rl]) best = nearest(x, y, best, kids[bt*2+rl]);
|
||||
if (kids[bt*2+(1-rl)]) best = nearest(x, y, best, kids[bt*2+(1-rl)]);
|
||||
if (kids[(1-bt)*2+rl]) best = nearest(x, y, best, kids[(1-bt)*2+rl]);
|
||||
if (kids[(1-bt)*2+(1-rl)]) best = nearest(x, y, best, kids[(1-bt)*2+(1-rl)]);
|
||||
|
||||
That's kinda neat, estimating probability with some math and then going into the index of the array where the point is more likely to be
|
||||
No idea why this works
|
||||
But I think I'm done with this
|
||||
Interesting, he doesn't even check if any of the rects contain the point
|
||||
Hmmm
|
||||
Oh I see
|
||||
It's because he's tracking whether a node is visited or not, and I'm putting in a lot of work to make sure you don't revisit the same node twice, but I don't do it with a "visited" bool, which I intentionally avoided but now seeing his solution, I realize it may have been a mistake
|
||||
JosephFerano
|
||||
—
|
||||
Today at 4:27 PM
|
||||
Actually I don't think adding "visited" is a good idea, because you have to walk through the whole thing again once you're done to uncheck all the visited bools. That's a linear walk through all the nodes, which might not be much, but it's certainly making things slower
|
||||
I'll have to investigate further
|
||||
|
@ -3,13 +3,25 @@ from pyray import (Rectangle as Rect, Vector2 as Vec2, Vector3 as Vec3, Camera3D
|
||||
import math
|
||||
import pdb
|
||||
import random
|
||||
from ctypes import Structure, c_float
|
||||
from typing import Optional, Tuple, List
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
screen_width = 1280
|
||||
screen_height = 1024
|
||||
def dump(struct):
|
||||
s = f"{RL.ffi.typeof(struct)}: (".replace('<ctype ', '').replace('>', '')
|
||||
for field in dir(struct):
|
||||
data = struct.__getattribute__(field)
|
||||
if str(data).startswith("<cdata"):
|
||||
data = dump(data)
|
||||
s += f"{field}:{data} "
|
||||
s += ")"
|
||||
return s
|
||||
|
||||
screen_width = 1024
|
||||
screen_height = 768
|
||||
grid_slices = 100
|
||||
grid_spacing = 0.2
|
||||
vertex_radius = 0.12
|
||||
|
||||
@dataclass
|
||||
class World:
|
||||
@ -18,6 +30,8 @@ class World:
|
||||
rotate_cam: bool = True
|
||||
frame_count: int = 0
|
||||
vertices: List[Vec3] = field(default_factory=list)
|
||||
dragging_vert: Vec3 = None
|
||||
convex_hull_points: List[Vec3] = field(default_factory=list)
|
||||
|
||||
def init() -> World:
|
||||
cam = Camera3D(Vec3(0, 10, 10), Vec3(0, 0, 0), Vec3(0, 1, 0), 45, RL.CAMERA_PERSPECTIVE)
|
||||
@ -29,24 +43,73 @@ def player_input(w: World):
|
||||
if RL.is_key_pressed(RL.KEY_SPACE):
|
||||
w.rotate_cam = not w.rotate_cam
|
||||
if RL.is_mouse_button_pressed(0):
|
||||
mouse_pos = RL.get_mouse_position()
|
||||
ray = RL.get_mouse_ray(mouse_pos, w.cam)
|
||||
ray = RL.get_mouse_ray(RL.get_mouse_position(), w.cam)
|
||||
# First try to collide with existing points
|
||||
for v in w.vertices:
|
||||
collision = RL.get_ray_collision_sphere(ray, v, vertex_radius)
|
||||
if collision.hit:
|
||||
w.dragging_vert = v
|
||||
found_collision = True
|
||||
return
|
||||
|
||||
w.dragging_vert = None
|
||||
collision = RL.get_ray_collision_box(ray, w.floor_bb)
|
||||
if collision.hit:
|
||||
p = collision.point
|
||||
w.vertices.append(Vec3(p.x, 0, p.z))
|
||||
if RL.is_mouse_button_down(0):
|
||||
if w.dragging_vert is not None:
|
||||
ray = RL.get_mouse_ray(RL.get_mouse_position(), w.cam)
|
||||
collision = RL.get_ray_collision_box(ray, w.floor_bb)
|
||||
if collision.hit:
|
||||
w.dragging_vert.x = collision.point.x
|
||||
w.dragging_vert.z = collision.point.z
|
||||
if RL.is_mouse_button_released(0):
|
||||
print('no')
|
||||
w.dragging_vert = None
|
||||
|
||||
def update(w: World):
|
||||
pass
|
||||
if len(w.vertices) <= 2:
|
||||
return
|
||||
w.convex_hull_points.clear()
|
||||
pending = sorted(w.vertices, key=lambda v: v.x)
|
||||
w.convex_hull_points.append(pending[0])
|
||||
idx = 0
|
||||
# TODO:
|
||||
while True:
|
||||
v1 = w.convex_hull_points[-1]
|
||||
left_most = pending[(idx + 1) % len(pending)]
|
||||
idx += 1
|
||||
if v1 == left_most:
|
||||
continue
|
||||
for v2 in pending:
|
||||
x1 = v1.x - left_most.x
|
||||
x2 = v1.x - v2.x
|
||||
y1 = v1.z - left_most.z
|
||||
y2 = v1.z - v2.z
|
||||
|
||||
sign = y2*x1 - y1*x2
|
||||
if v1 == v2:
|
||||
continue
|
||||
if sign > 0:
|
||||
left_most = v2
|
||||
if left_most == w.convex_hull_points[0]:
|
||||
break
|
||||
w.convex_hull_points.append(left_most)
|
||||
|
||||
def draw_3d(w: World):
|
||||
RL.draw_grid(grid_slices, grid_spacing)
|
||||
RL.draw_bounding_box(w.floor_bb, RL.GREEN)
|
||||
for vert in w.vertices:
|
||||
RL.draw_sphere(vert, 0.1, RL.GREEN)
|
||||
RL.draw_sphere(vert, vertex_radius, RL.GREEN)
|
||||
if len(w.convex_hull_points) > 2:
|
||||
for i,p in enumerate(w.convex_hull_points[:-1]):
|
||||
RL.draw_line_3d(p, w.convex_hull_points[i+1], RL.GREEN)
|
||||
RL.draw_line_3d(w.convex_hull_points[-1], w.convex_hull_points[0], RL.GREEN)
|
||||
# exit(0)
|
||||
|
||||
def draw_2d(w: World):
|
||||
pass
|
||||
RL.draw_fps(10, 10)
|
||||
|
||||
RL.init_window(screen_width, screen_height, "Starter");
|
||||
RL.set_target_fps(60)
|
||||
|
Loading…
x
Reference in New Issue
Block a user