Handle accumulator differently, handle segment registers, handle unary, add instructions

This commit is contained in:
Joseph Ferano 2025-03-07 10:14:36 +07:00
parent 390fedc848
commit 782ff93ace

View File

@ -159,36 +159,54 @@ InstructionInfo :: struct {
reg_info: Maybe(RegInfo),
has_data: bool,
has_address: bool,
has_accumulator: bool,
uses_accumulator: bool,
has_segreg: bool,
has_flip: bool,
has_sign_extension: bool,
is_jump: bool,
is_unary: bool,
}
// TODO: Maybe we can get rid of it since I don't have to specify the shift_offset,
// not like it changes a lot
reg_first_last := RegInfo{ in_first_byte = true, shift_offset = 0 }
reg_second_middle := RegInfo{ in_first_byte = false, shift_offset = 3 }
reg_first_middle := RegInfo{ in_first_byte = true, shift_offset = 3 }
instructions := [?]InstructionInfo {
{ opname = .MOV, desc = "Register/memory to/from register", mask = 0b11111100, encoding = 0b10001000,
{ opname = .MOV, desc = "Register/memory to/from register", mask = 0b11111100, encoding = 0b10001000,
reg_info = reg_second_middle, has_address = true, word_size = LastBit{}, has_flip = true },
{ opname = .MOV, desc = "Immediate to register/memory", mask = 0b11111110, encoding = 0b11000110,
{ opname = .MOV, desc = "Immediate to register/memory", mask = 0b11111110, encoding = 0b11000110,
has_data = true, has_address = true, word_size = LastBit{}, },
{ opname = .MOV, desc = "Immediate to register", mask = 0b11110000, encoding = 0b10110000,
{ opname = .MOV, desc = "Immediate to register", mask = 0b11110000, encoding = 0b10110000,
reg_info = reg_first_last, has_data = true, word_size = FourthBit{} },
{ opname = .MOV, desc = "Memory to accumulator", mask = 0b11111110, encoding = 0b10100000,
has_flip = true, word_size = LastBit{}, has_accumulator = true },
{ opname = .MOV, desc = "Accumulator to memory", mask = 0b11111110, encoding = 0b10100010,
has_flip = true, word_size = LastBit{}, has_accumulator = true },
{ opname = .MOV, desc = "Register/memory to segment register", mask = 0b11111111, encoding = 0b10001110,
{ opname = .MOV, desc = "Memory to accumulator", mask = 0b11111110, encoding = 0b10100000,
has_flip = true, word_size = LastBit{}, uses_accumulator = true },
{ opname = .MOV, desc = "Accumulator to memory", mask = 0b11111110, encoding = 0b10100010,
has_flip = true, word_size = LastBit{}, uses_accumulator = true },
{ opname = .MOV, desc = "Register/memory to segment register", mask = 0b11111111, encoding = 0b10001110,
has_segreg = true, has_address = true, word_size = None{} },
{ opname = .MOV, desc = "Segment register to register/memory", mask = 0b11111111, encoding = 0b10001100,
{ opname = .MOV, desc = "Segment register to register/memory", mask = 0b11111111, encoding = 0b10001100,
has_segreg = true, has_address = true, word_size = None{} },
{ opname = .TBD, desc = "Reg/memory with register to either", mask = 0b11000100, encoding = 0b00000000,
{ opname = .PUSH, desc = "", mask = 0b11111111, encoding = 0b11111111,
has_address = true, word_size = None{}, is_unary = true },
{ opname = .PUSH, desc = "", mask = 0b11111000, encoding = 0b01010000,
reg_info = reg_first_last, word_size = Force{}, is_unary = true },
{ opname = .PUSH, desc = "", mask = 0b11100111, encoding = 0b00000110,
has_segreg = true, reg_info = reg_first_middle, word_size = Force{}, is_unary = true },
{ opname = .POP, desc = "", mask = 0b11111111, encoding = 0b10001111,
has_address = true, word_size = None{}, is_unary = true },
{ opname = .POP, desc = "", mask = 0b11111000, encoding = 0b01011000,
reg_info = reg_first_last, word_size = Force{}, is_unary = true },
{ opname = .POP, desc = "", mask = 0b11100111, encoding = 0b00000111,
has_segreg = true, reg_info = reg_first_middle, word_size = None{}, is_unary = true },
{ opname = .XCHG, desc = "", mask = 0b11111110, encoding = 0b10000110,
reg_info = reg_second_middle, has_address = true, word_size = LastBit{}, has_flip = true},
{ opname = .XCHG, desc = "", mask = 0b11111000, encoding = 0b10010000,
reg_info = reg_first_last, uses_accumulator = true, word_size = Force{}, },
{ opname = .TBD, desc = "Reg/memory with register to either", mask = 0b11000100, encoding = 0b00000000,
opcode_id = .First, reg_info = reg_second_middle, has_address = true, word_size = LastBit{}, has_flip = true },
{ opname = .TBD, desc = "Immediate to register/memory", mask = 0b11111100, encoding = 0b10000000,
{ opname = .TBD, desc = "Immediate to register/memory", mask = 0b11111100, encoding = 0b10000000,
opcode_id = .Second, has_data = true, has_address = true,
word_size = LastBit{}, has_sign_extension = true },
{ opname = .TBD, desc = "Immediate to accumulator", mask = 0b11000100, encoding = 0b00000100,
@ -299,6 +317,8 @@ get_memory_type_string :: proc(mem_type: OperandType, is_word: bool) -> string {
string_val = get_memory_string(val)
case Accumulator:
string_val = fmt.aprintf("[%d]", val)
case SegmentRegister:
string_val = segment_registers[val].fullname
}
return string_val
}
@ -383,13 +403,17 @@ main :: proc() {
// asdf :u16 = 0b00000011_11101000
// asdf2 :i16 = (i16)(asdf)
// fmt.printfln("%d", asdf2)
print_at_end := false
read_next := false
src_dst := true
idx := 0
added_label := false
line_count := 0
// last_opname: string
last_opname: [3]byte
instruction_builder := strings.builder_make()
instruction_list := make([dynamic]string, 128)
instruction_list := make([dynamic]string, 512)
fmt.println("bits 16")
for idx < bytes_read {
processed := 1
curr_byte := data[idx]
@ -422,6 +446,7 @@ main :: proc() {
switch val in instruction.word_size {
case LastBit: is_word = curr_byte & 1 == 1
case FourthBit: is_word = curr_byte & 0b0000_1000 != 0
case Force: is_word = true
case None:
}
@ -459,6 +484,10 @@ main :: proc() {
} else if mod == 3 {
lhs2 = (RegisterId)(registers[rm].code)
}
} else if instruction.has_segreg {
lhs2 = (SegmentRegister)(segment_registers[reg].code)
} else if instruction.uses_accumulator {
lhs2 = (RegisterId)(registers[0].code)
} else {
lhs2 = (RegisterId)(registers[reg].code)
}
@ -470,9 +499,13 @@ main :: proc() {
processed += word_signed ? 2 : 1
rhs2 = (OperandType)(word_signed ? (Immediate16)(get_i16(data[data_idx:])) : (Immediate8)(data[data_idx]))
has_immediate = true
} else if instruction.has_accumulator {
processed += is_word ? 2 : 1
rhs2 = (OperandType)(is_word ? (Accumulator)(get_i16(data[data_idx:])) : (Accumulator)(data[data_idx]))
} else if instruction.uses_accumulator {
if _, ok := instruction.word_size.(LastBit); ok {
processed += is_word ? 2 : 1
rhs2 = (OperandType)(is_word ? (Accumulator)(get_i16(data[data_idx:])) : (Accumulator)(data[data_idx]))
} else {
rhs2 = (RegisterId)(reg)
}
} else {
rhs2 = (RegisterId)(reg)
}
@ -500,6 +533,11 @@ main :: proc() {
value := (i8)(data[idx+1]) + 2
full_inst = fmt.aprintf("%s $%s%d ; %d", strings.to_lower(opname), value >= 0 ? "+" : "", value, value - 2)
processed += 1
} else if instruction.is_unary {
if instruction.has_address {
size_string = "word "
}
full_inst = fmt.aprintf("%s %s%s", opname, size_string, lhs)
} else {
opname = strings.to_lower(opname)
if opname == "mov" {
@ -512,13 +550,28 @@ main :: proc() {
for i in 0..<processed {
fmt.sbprintf(&instruction_builder, " %08b", data[idx + i])
}
instruction_list[line_count] = strings.clone(strings.to_string(instruction_builder))
if print_at_end {
instruction_list[line_count] = strings.clone(strings.to_string(instruction_builder))
} else {
op := strings.to_string(instruction_builder)
if op[0:3] != string(last_opname[:]) {
fmt.println()
}
copy(last_opname[:], op[0:3])
fmt.println(op)
}
idx += processed
line_count += 1
strings.builder_reset(&instruction_builder)
}
fmt.println("bits 16\n")
for i in 0..<line_count {
fmt.println(instruction_list[i])
if print_at_end {
for i in 0..<line_count {
opname := instruction_list[i]
if !strings.has_prefix(opname, string(last_opname[:])) {
fmt.println()
}
copy(last_opname[:], opname[0:3])
fmt.println(instruction_list[i])
}
}
}