package decoder_8086 import "core:os" import "core:fmt" import "core:math" Register :: struct { fullname: string, bytename: string, value: struct #raw_union { using _: struct { low, high: byte, }, full: u16, }, code: u8, } OpName :: enum { MOV, ADD, SUB, CMP, JMP, } registers := [8]Register { {fullname = "ax", bytename = "al", code = 0b000}, {fullname = "cx", bytename = "cl", code = 0b001}, {fullname = "dx", bytename = "dl", code = 0b010}, {fullname = "bx", bytename = "bl", code = 0b011}, {fullname = "sp", bytename = "ah", code = 0b100}, {fullname = "bp", bytename = "ch", code = 0b101}, {fullname = "si", bytename = "dh", code = 0b110}, {fullname = "di", bytename = "bh", code = 0b111}, } RegInfo :: struct { in_first_byte: bool, shift_offset: u8, } LastBit :: struct{} FourthBit :: struct{} WordSize :: union { None, LastBit, FourthBit, } InstructionInfo :: struct { mask: u8, encoding: u8, name: string, desc: string, has_mod_rm: bool, word_size: WordSize, reg_info: Maybe(RegInfo), has_data: bool, has_displacement: bool, has_segreg: bool, has_flip: bool, has_explicit_size: bool, has_accumulator: bool, } reg_first_last := RegInfo{ in_first_byte = true, shift_offset = 0 } reg_second_middle := RegInfo{ in_first_byte = false, shift_offset = 3 } instructions := [?]InstructionInfo { { name = "mov", desc = "Register/memory to/from register", mask = 0b11111100, encoding = 0b10001000, has_mod_rm = true, reg_info = reg_second_middle, has_data = false, has_displacement = true, word_size = LastBit{}, has_flip = true }, { name = "mov", desc = "Immediate to register/memory", mask = 0b11111110, encoding = 0b11000110, has_mod_rm = true, reg_info = nil, has_data = true, has_displacement = true, word_size = LastBit{}, has_explicit_size = true }, { name = "mov", desc = "Immediate to register", mask = 0b11110000, encoding = 0b10110000, has_mod_rm = false, reg_info = reg_first_last, has_data = true, has_displacement = false, word_size = FourthBit{} }, { name = "mov", desc = "Memory to accumulator", mask = 0b11111110, encoding = 0b10100000, has_mod_rm = false, reg_info = nil, has_data = true, has_displacement = false, has_flip = true, word_size = LastBit{}, has_accumulator = true }, { name = "mov", desc = "Accumulator to memory", mask = 0b11111110, encoding = 0b10100010, has_mod_rm = false, reg_info = nil, has_data = true, has_displacement = false, has_flip = true, word_size = LastBit{}, has_accumulator = true }, { name = "mov", desc = "Register/memory to segment register", mask = 0b11111111, encoding = 0b10001110, has_mod_rm = true, reg_info = nil, has_segreg = true, has_displacement = true, word_size = None{} }, { name = "mov", desc = "Segment register to register/memory", mask = 0b11111111, encoding = 0b10001100, has_mod_rm = true, reg_info = nil, has_segreg = true, has_displacement = true, word_size = None{} }, } None :: struct {} Disp8 :: i8 Disp16 :: i16 Displacement :: union { None, Disp8, Disp16 } Value8 :: i8 Value16 :: i16 Data :: union { None, Value8, Value16 } ModMemory :: struct {} Mod8BitDisp :: i8 Mod16BitDisp :: i16 ModRegister :: struct {} ModMode :: union { ModMemory, Mod8BitDisp, Mod16BitDisp, ModRegister, } RegisterId :: distinct u8 Immediate8 :: distinct i8 Immediate16 :: distinct i16 MemoryAddr :: struct { addr_id: u8, displacement: Displacement } DirectAddress :: distinct i16 Accumulator8 :: distinct i8 Accumulator16 :: distinct i16 OperandType :: union { RegisterId, Immediate8, Immediate16, MemoryAddr, DirectAddress, Accumulator8, Accumulator16, } inst_map := make(map[u8]InstructionInfo) RIGHT_ALIGN_AMOUNT := 30 calculate_effective_address :: proc(r_m: u8) -> string { val: string switch r_m { case 0b000: val = "bx + si" case 0b001: val = "bx + di" case 0b010: val = "bp + si" case 0b011: val = "bp + di" case 0b100: val = "si" case 0b101: val = "di" case 0b110: val = "bp" case 0b111: val = "bx" } return val } get_memory_string :: proc(memoryAddr: MemoryAddr) -> string { disp: string switch value in memoryAddr.displacement { case None: disp = "" case Disp8: if value != 0 { disp = fmt.aprintf(" %s %d", value > 0 ? "+" : "-", math.abs(value)) } case Disp16: if value != 0 { disp = fmt.aprintf(" %s %d", value > 0 ? "+" : "-", math.abs(value)) } } text := fmt.aprintf("[%s%s]", calculate_effective_address(memoryAddr.addr_id), disp) return text } get_memory_type_string :: proc(mem_type: OperandType, is_word: bool) -> string { switch val in mem_type { case RegisterId: return is_word ? registers[val].fullname : registers[val].bytename case Immediate8: return fmt.aprintf("%d", val) case Immediate16: return fmt.aprintf("%d", val) case MemoryAddr: return get_memory_string(val) case DirectAddress: return fmt.aprintf("[%d]", val) case Accumulator8: return fmt.aprintf("[%d]", val) case Accumulator16: return fmt.aprintf("[%d]", val) } return "" } get_i16 :: proc(data: []u8) -> i16 { return (i16)(data[1]) << 8 | (i16)(data[0]) } parse_displacement :: proc(data: []u8) -> (displacement: Displacement, disp_amount: int) { mod := (data[0] & 0b11000000) >> 6 disp: Displacement = None{} amount: int switch mod { case 1: disp = (i8)(data[1]) amount = 1 case 2: disp = get_i16(data[1:]) amount = 2 } return disp, amount } get_displacement_string :: proc(displacement: Displacement) -> string { disp := "" #partial switch value in displacement { case i8: if value != 0 { disp = fmt.aprintf(" %s %d", value > 0 ? "+" : "-", math.abs(value)) } case i16: if value != 0 { disp = fmt.aprintf(" %s %d", value > 0 ? "+" : "-", math.abs(value)) } } return disp } try_find_instruction :: proc(b: u8) -> (InstructionInfo, bool) { mask: u8 = 0xFF for j in 0..=4 { encoding := b & mask if inst, ok := inst_map[encoding]; ok { return inst, true } mask <<= 1 } return InstructionInfo{}, false } main :: proc() { f,err := os.open(len(os.args) > 1 ? os.args[1] : "./asm_files/01-02-39.bin") // f,err := os.open(len(os.args) > 1 ? os.args[1] : "./asm_files/01-02-40.bin") if err != os.ERROR_NONE { os.exit(1) } defer os.close(f) data := make([]u8, 512) bytes_read, err2 := os.read(f, data) if err2 != nil { // ... os.exit(1) } for inst in instructions { inst_map[inst.encoding] = inst } if false { os.exit(0) } // asdf :u16 = 0b1111_0000_1001_0100 // asdf2 :i16 = (i16)(asdf) // fmt.printfln("%d", asdf2) read_next := false src_dst := true fmt.println("bits 16\n") idx := 0 for idx < bytes_read { processed := 1 curr_byte := data[idx] instruction, ok := try_find_instruction(curr_byte) if !ok { txt := "unknown instruction" fmt.printfln("%s %*[1]s %8b", txt, RIGHT_ALIGN_AMOUNT - len(txt), ";;", curr_byte) idx += 1 continue } lhs2: OperandType rhs2: OperandType is_word: bool is_immediate := false flip_dst := false rm: u8 mod: u8 reg: u8 if instruction.has_flip { flip_dst = curr_byte & 2 != 0 } switch val in instruction.word_size { case LastBit: is_word = curr_byte & 1 == 1 case FourthBit: is_word = curr_byte & 0b0000_1000 != 0 case None: } if reg_info, ok := instruction.reg_info.(RegInfo); ok { b := reg_info.in_first_byte ? data[idx] : data[idx+1] reg = (b >> reg_info.shift_offset) & 0b111 } if instruction.has_mod_rm { mod = data[idx+1] >> 6 rm = data[idx+1] & 0b00000111 processed += 1 + ((int)(mod) % 3) if mod == 0 { if rm == 0b110 { lhs2 = (DirectAddress)(get_i16(data[idx+2:])) processed += 2 } else { lhs2 = MemoryAddr{ addr_id = rm , displacement = None{} } } } else if mod == 1 { lhs2 = MemoryAddr{ addr_id = rm , displacement = (i8)(data[idx+2]) } } else if mod == 2 { lhs2 = MemoryAddr{ addr_id = rm , displacement = get_i16(data[idx+2:]) } } else if mod == 3 { lhs2 = (RegisterId)(registers[rm].code) } if instruction.has_explicit_size { imm_idx := idx + 2 + ((int)(mod) % 3) rhs2 = (OperandType)(is_word ? (Immediate16)(get_i16(data[imm_idx:])) : (Immediate8)(data[imm_idx])) processed += is_word ? 2 : 1 } else { rhs2 = (RegisterId)(reg) } } else { lhs2 = (RegisterId)(registers[reg].code) if instruction.has_accumulator { rhs2 = (OperandType)(is_word ? ((Accumulator16)(get_i16(data[idx+1:]))) : ((Accumulator8)(data[idx+1]))) } else { rhs2 = (OperandType)(is_word ? ((Immediate16)(get_i16(data[idx+1:]))) : ((Immediate8)(data[idx+1]))) } processed += is_word ? 2 : 1 } if flip_dst { lhs2, rhs2 = rhs2, lhs2 } lhs := get_memory_type_string(lhs2, is_word) rhs := get_memory_type_string(rhs2, is_word) size_string := instruction.has_explicit_size ? is_word ? "word " : "byte " : "" full_inst := fmt.aprintf("%s %s, %s%s", instruction.name, lhs, size_string, rhs) fmt.printf("%s %*[1]s a", full_inst, RIGHT_ALIGN_AMOUNT - len(full_inst), ";;") for i in 0..