432 lines
12 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <string.h>
#include <assert.h>
#include "lib.h"
#include "decode.h"
/// Get Effective Address Calculation Registers
char* get_eac_register(char rm)
{
char* reg_name;
switch (rm)
{
case 0b000: reg_name = "bx + si"; break;
case 0b001: reg_name = "bx + di"; break;
case 0b010: reg_name = "bp + si"; break;
case 0b011: reg_name = "bp + di"; break;
case 0b100: reg_name = "si"; break;
case 0b101: reg_name = "di"; break;
case 0b110: reg_name = "bp"; break;
case 0b111: reg_name = "bx"; break;
default: perror("Invalid R/M value"); exit(1);
}
return reg_name;
}
static char* reg_name(Register reg, char wide)
{
return wide == 1 ? reg.fullname : reg.bytename;
}
static u8 mask_and_shift(u8 value, u8 mask)
{
value &= mask;
int count = 0;
while ((mask & 0x1) == 0 && count < 8)
{
value >>= 1;
mask >>= 1;
count++;
}
return value;
}
ParsedInstruction parse_instruction_ids(u8* buf)
{
u8 inst = buf[0];
InstFormat fmt = {0};
bool matched_inst = false;
// TODO: This might be a good time to learn how to make a hashtable in C
for (u16 i = 0; i < sizeof(inst_funcs) / (sizeof(inst_parser_f)*6*4); i++)
for (int j = 0; j < 6; j++)
for (int k = 0; k < 4 && inst_funcs[i][j][k] != NULL; k++)
{
printf("%p\n", (void*)(uptr)inst_funcs[i][j][k]);
// Apply inst_func_t
}
// for (int j = 0; j < 4 || ;)
return (ParsedInstruction){0};
if (!matched_inst)
return (ParsedInstruction){.bytes_read = 0};
u8_opt d_opt = none_u8();
u8_opt s_opt = none_u8();
u8_opt w_opt = none_u8();
u8_opt reg_opt = none_u8();
u8_opt mod_opt = none_u8();
u8_opt rm_opt = none_u8();
u16_opt data_opt = none_u16();
u16_opt displacement_opt = none_u16();
u8 is_data_addr = false;
u16 bytes_read = 1;
bytes_read += fmt.has_operands ? 1 : 0;
if (fmt.has_d) d_opt = some_u8((inst & 0x2) >> 1);
if (fmt.has_s) s_opt = some_u8((inst & 0x2) >> 1);
if (fmt.has_rm) rm_opt = some_u8(buf[1] & 0x7);
if (fmt.has_mod) mod_opt = some_u8((buf[1] & 0b11000000) >> 6);
if (fmt.has_w) w_opt = some_u8(mask_and_shift(buf[0], fmt.mask_w));
if (fmt.parse_reg.tag == P_REG_MASK)
{
u8 reg = fmt.has_operands ? buf[1] : buf[0];
reg_opt = some_u8(mask_and_shift(reg, fmt.parse_reg.mask));
}
else if (fmt.parse_reg.tag == P_REG_FIXED)
{
reg_opt = some_u8(fmt.parse_reg.fixed);
is_data_addr = true;
}
if (fmt.has_data)
{
u8 idx = 1;
if (fmt.has_operands) idx += 1;
// This is a trick because mod == 1 and mod == 2 will displace one and two bytes
// respectively but mod == 3 wraps to 0 since it doesn't displace
if (fmt.has_displacement) idx += mod_opt.value % 3;
u16 data;
if (fmt.has_s && s_opt.value == 1)
{
data = (sbyte)buf[idx];
bytes_read += 1;
}
else
{
data = w_opt.value != 0 ? (i16)buf[idx+1] << 8 | buf[idx] : (sbyte)buf[idx];
bytes_read += w_opt.value == 0 ? 1 : 2;
}
data_opt = some_u16(data);
}
if (fmt.has_displacement && mod_opt.value % 3 > 0)
{
u16 disp = mod_opt.value == MODE_MEM_DIS_16
? (i16)buf[3] << 8 | buf[2]
: (sbyte)buf[2];
displacement_opt = some_u16(disp);
bytes_read += mod_opt.value % 3;
}
else if (fmt.has_displacement && mod_opt.value == MODE_MEM_NO_DIS && rm_opt.value == 0x6)
{
displacement_opt = some_u16((i16)buf[3] << 8 | buf[2]);
bytes_read += 2;
}
return (ParsedInstruction) {
.id = fmt.id,
.name = fmt.name,
.data = data_opt,
.displacement = displacement_opt,
.w = w_opt,
.d = d_opt,
.s = s_opt,
.mod = mod_opt,
.reg = reg_opt,
.rm = rm_opt,
.is_data_addr = is_data_addr,
.bytes_read = bytes_read,
};
}
ParsedInstruction parse_instruction(u8* buf)
{
u8 inst = buf[0];
InstFormat fmt = {0};
bool matched_inst = false;
// TODO: This might be a good time to learn how to make a hashtable in C
for (u16 i = 0; i < sizeof(inst_formats) / sizeof(InstFormat); i++)
{
if ((inst & ~inst_formats[i].mask_inst) == inst_formats[i].inst_enc)
{
fmt = inst_formats[i];
matched_inst = true;
break;
}
}
if (!matched_inst)
return (ParsedInstruction){.bytes_read = 0};
u8_opt d_opt = none_u8();
u8_opt s_opt = none_u8();
u8_opt w_opt = none_u8();
u8_opt reg_opt = none_u8();
u8_opt mod_opt = none_u8();
u8_opt rm_opt = none_u8();
u16_opt data_opt = none_u16();
u16_opt displacement_opt = none_u16();
u8 is_data_addr = false;
u16 bytes_read = 1;
bytes_read += fmt.has_operands ? 1 : 0;
if (fmt.has_d) d_opt = some_u8((inst & 0x2) >> 1);
if (fmt.has_s) s_opt = some_u8((inst & 0x2) >> 1);
if (fmt.has_rm) rm_opt = some_u8(buf[1] & 0x7);
if (fmt.has_mod) mod_opt = some_u8((buf[1] & 0b11000000) >> 6);
if (fmt.has_w) w_opt = some_u8(mask_and_shift(buf[0], fmt.mask_w));
if (fmt.parse_reg.tag == P_REG_MASK)
{
u8 reg = fmt.has_operands ? buf[1] : buf[0];
reg_opt = some_u8(mask_and_shift(reg, fmt.parse_reg.mask));
}
else if (fmt.parse_reg.tag == P_REG_FIXED)
{
reg_opt = some_u8(fmt.parse_reg.fixed);
is_data_addr = true;
}
if (fmt.has_data)
{
u8 idx = 1;
if (fmt.has_operands) idx += 1;
// This is a trick because mod == 1 and mod == 2 will displace one and two bytes
// respectively but mod == 3 wraps to 0 since it doesn't displace
if (fmt.has_displacement) idx += mod_opt.value % 3;
u16 data;
if (fmt.has_s && s_opt.value == 1)
{
data = (sbyte)buf[idx];
bytes_read += 1;
}
else
{
data = w_opt.value != 0 ? (i16)buf[idx+1] << 8 | buf[idx] : (sbyte)buf[idx];
bytes_read += w_opt.value == 0 ? 1 : 2;
}
data_opt = some_u16(data);
}
if (fmt.has_displacement && mod_opt.value % 3 > 0)
{
u16 disp = mod_opt.value == MODE_MEM_DIS_16
? (i16)buf[3] << 8 | buf[2]
: (sbyte)buf[2];
displacement_opt = some_u16(disp);
bytes_read += mod_opt.value % 3;
}
else if (fmt.has_displacement && mod_opt.value == MODE_MEM_NO_DIS && rm_opt.value == 0x6)
{
displacement_opt = some_u16((i16)buf[3] << 8 | buf[2]);
bytes_read += 2;
}
return (ParsedInstruction) {
.id = fmt.id,
.name = fmt.name,
.data = data_opt,
.displacement = displacement_opt,
.w = w_opt,
.d = d_opt,
.s = s_opt,
.mod = mod_opt,
.reg = reg_opt,
.rm = rm_opt,
.is_data_addr = is_data_addr,
.bytes_read = bytes_read,
};
}
Instruction decode_instruction(ParsedInstruction inst)
{
Operand opr1 , opr2 = {0};
i16 payload = 0;
IF_LET_SOME(u8, mod, inst.mod)
{
IF_LET_SOME(u8, reg, inst.reg)
{
opr1.tag = OPR_T_REGISTER;
opr1.reg.value = registers[(size_t)reg];
opr1.reg.wide = inst.w.value;
}
else
{
opr1.tag = OPR_T_IMMEDIATE;
opr1.imm.value = inst.data.value;
// TODO: This is dumb, we shouldn't do it this way
if (inst.s.value == 1) opr1.imm.direct = 0;
else opr1.imm.direct = inst.w.value + 1;
}
if (mod == MODE_RGSTR_MODE)
{
opr2.tag = OPR_T_REGISTER;
opr2.reg.value = registers[(size_t)inst.rm.value];
opr2.reg.wide = inst.w.value;
}
else if (mod == MODE_MEM_NO_DIS && inst.rm.value == 0x6)
{
opr2.tag = OPR_T_DIRADDR;
opr2.dir_addr.value = inst.displacement.value;
}
else
{
opr2.tag = OPR_T_MEMORY;
opr2.mem.eac_name = get_eac_register(inst.rm.value);
opr2.mem.mode = mod;
opr2.mem.displacement = (i16)inst.displacement.value;
}
}
else
{
IF_LET_SOME(u16, data, inst.data)
{
if (inst.is_data_addr)
{
opr1.tag = OPR_T_DIRADDR;
opr1.dir_addr.value = (i16)data;
}
else
{
opr1.tag = OPR_T_IMMEDIATE;
opr1.imm.value = (i16)data;
opr1.imm.direct = 0;
}
}
IF_LET_SOME(u8, reg, inst.reg)
{
opr2.tag = OPR_T_REGISTER;
opr2.reg.value = registers[(size_t)reg];
opr2.reg.wide = inst.w.value;
}
}
if (inst.d.tag == SOME && inst.d.value == 1)
{
Operand temp = opr1;
opr1 = opr2;
opr2 = temp;
}
return (Instruction) {
.id = inst.id,
.data = payload,
.operation = inst.name,
.src_opr = opr1,
.dst_opr = opr2,
};
}
void get_operand_string(char* str_buf, Operand oprnd)
{
if (oprnd.tag == OPR_T_REGISTER)
{
strcpy(str_buf, reg_name(oprnd.reg.value, oprnd.reg.wide));
}
else if (oprnd.tag == OPR_T_MEMORY)
{
char disp_str[16] = {'\0'};
i16 disp = oprnd.mem.displacement;
if (disp != 0)
sprintf(disp_str, " %s %d", (disp > 0 ? "+" : "-"), abs(disp));
sprintf(str_buf, "[%s%s]", oprnd.mem.eac_name, disp_str);
}
else if (oprnd.tag == OPR_T_IMMEDIATE)
{
char *size = "";
if (oprnd.imm.direct > 0)
size = oprnd.imm.direct == 1 ? "byte " : "word ";
sprintf(str_buf, "%s%d", size, oprnd.imm.value);
}
else if (oprnd.tag == OPR_T_DIRADDR)
{
sprintf(str_buf, "[%d]", oprnd.dir_addr.value);
}
}
void get_instr_string(char* str_buf, Instruction inst)
{
char src_str[32], dst_str[32];
get_operand_string(src_str, inst.src_opr);
get_operand_string(dst_str, inst.dst_opr);
sprintf(str_buf, "%s %s, %s", inst.operation, dst_str, src_str);
}
char *memory[65536];
// Keep this global for debugging purposes
u16 inst_count = 1;
int main(int argc, char** argv)
{
if (argc < 2)
{
printf("Usage: Please provide assembled instructions as input\n");
exit(0);
}
struct stat st;
if (stat(argv[1], &st) == -1)
{
perror("Unable to get file size\n");
return EXIT_FAILURE;
}
unsigned char* buffer = malloc(st.st_size);
if (!buffer)
{
perror("Unable to allocate memory for binary file");
return EXIT_FAILURE;
}
FILE *f = fopen(argv[1], "r");
if (!f)
{
perror("fopen\n");
free(buffer);
return EXIT_FAILURE;
}
size_t bytes_read = fread(buffer, sizeof(unsigned char), st.st_size, f);
if (bytes_read != (size_t)st.st_size)
{
fprintf(stderr, "Read of binary file to memory incomplete.\n");
free(buffer);
fclose(f);
return EXIT_FAILURE;
}
fclose(f);
printf("; Decoded 8086 Assembly Instructions\n\n");
printf("bits 16\n\n");
char *inst_str_buf = malloc(sizeof(char) * 256);
u32 bytes_processed = 0;
while (bytes_processed < bytes_read)
{
ParsedInstruction _ = parse_instruction_ids(buffer + bytes_processed);
(void)_;
ParsedInstruction parsed = parse_instruction(buffer + bytes_processed);
if (parsed.bytes_read > 0)
{
Instruction inst = decode_instruction(parsed);
get_instr_string(inst_str_buf, inst);
bytes_processed += parsed.bytes_read;
// printf("%s %d/%ld", inst_str_buf, bytes_processed, bytes_read);
printf("%s", inst_str_buf);
int len = strlen(inst_str_buf);
for (int i = 0; i < 32 - len; i++)
printf(" ");
printf("; %d, %d", inst_count++, inst.id);
}
else
{
bytes_processed += 1;
fprintf(stderr, "___Unrecognized Instruction___");
}
// char inst = buffer[0];
// if (mov_inst(f, buffer, inst)) goto handled;
// if (add_inst(f, buffer, inst)) goto handled;
// handled:
printf("\n");
}
free(inst_str_buf);
free(buffer);
return 0;
}