Merge the other docs into TADM, it's all the same content anyway
This commit is contained in:
parent
415c6bc392
commit
e3094b7fb0
@ -1,71 +0,0 @@
|
||||
#+TITLE: Random Data Structures
|
||||
#+AUTHOR: Joseph Ferano
|
||||
#+OPTIONS: ^:{}
|
||||
|
||||
** Stack
|
||||
*** C
|
||||
|
||||
#+begin_src C :includes stdlib.h stdio.h stdbool.h
|
||||
typedef struct Node {
|
||||
struct Node* next;
|
||||
/* void *data; */
|
||||
int data;
|
||||
} Node;
|
||||
|
||||
typedef struct Stack {
|
||||
Node* top;
|
||||
int length;
|
||||
} Stack;
|
||||
|
||||
/* void stack_create(void* data) { */
|
||||
Stack *stack_create(int data) {
|
||||
Stack *stack = malloc(sizeof(Stack));
|
||||
Node *node = malloc(sizeof(Node));
|
||||
node->data = data;
|
||||
node->next = NULL;
|
||||
stack->top = node;
|
||||
stack->length = 1;
|
||||
return stack;
|
||||
}
|
||||
|
||||
int stack_pop(Stack *stack) {
|
||||
Node *top = stack->top;
|
||||
Node *next = top->next;
|
||||
if (stack->length > 0 && next != NULL) {
|
||||
stack->top = next;
|
||||
stack->length--;
|
||||
int value = top->data;
|
||||
free(top);
|
||||
return value;
|
||||
} else {
|
||||
// A better API design would be to return a bool and the int as a pointer
|
||||
// Although once we switch away from int and use void pointers, might not be needed
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* void stack_push(Stack *stack, void *data) { */
|
||||
void stack_push(Stack *stack, int data) {
|
||||
Node *node = malloc(sizeof(Node));
|
||||
Node *top = stack->top;
|
||||
node->data = data;
|
||||
node->next = top;
|
||||
stack->top = node;
|
||||
stack->length++;
|
||||
}
|
||||
|
||||
/* void* stack_peak(Stack *stack) { */
|
||||
int stack_peak(Stack *stack) {
|
||||
return stack->top->data;
|
||||
}
|
||||
|
||||
void stack_print(Stack *stack) {
|
||||
Node *current = stack->top;
|
||||
int i = 0;
|
||||
while (current != NULL) {
|
||||
printf("Stack at %d: %d\n", ++i, current->data);
|
||||
current = current->next;
|
||||
}
|
||||
printf("------------------\n");
|
||||
}
|
||||
#+end_src
|
@ -1,138 +0,0 @@
|
||||
#+TITLE: Notes & Exercises: Grokking Algorithms
|
||||
#+AUTHOR: Joseph Ferano
|
||||
#+OPTIONS: ^:{}
|
||||
|
||||
* Algorithms from the book
|
||||
|
||||
** Recursive sum
|
||||
|
||||
*** OCaml
|
||||
#+begin_src ocaml
|
||||
let rec sum_rec = function
|
||||
| [] -> 0
|
||||
| n::ns -> n + sum_rec ns;;
|
||||
|
||||
sum_rec [2;3;4;2;1];;
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: 12
|
||||
|
||||
#+begin_src ocaml
|
||||
let sum_rec_tail list =
|
||||
let rec f acc = function
|
||||
| [] -> 0
|
||||
| n::ns -> sum_rec (acc + n) ns
|
||||
in f 0 list;;
|
||||
|
||||
sum_rec [2;3;4;2;1];;
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: 12
|
||||
|
||||
*** Python
|
||||
|
||||
#+begin_src python :results output
|
||||
def sum_rec(arr):
|
||||
if not arr:
|
||||
return 0
|
||||
else:
|
||||
return arr[0] + sum_rec(arr[1:])
|
||||
|
||||
print(sum_rec([1,2,3]))
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: 6
|
||||
|
||||
** Binary Search
|
||||
*** OCaml
|
||||
|
||||
#+begin_src ocaml
|
||||
let binary_search items target =
|
||||
let rec f low high =
|
||||
match (high - low) / 2 + low with
|
||||
| mid when target = items.(mid) -> Some items.(mid)
|
||||
| mid when target < items.(mid) -> f low mid
|
||||
| mid when target > items.(mid) -> f mid high
|
||||
| _ -> None
|
||||
in f 0 (Array.length items);;
|
||||
|
||||
binary_search [|1;2;3;4;5|] 3;;
|
||||
#+end_src
|
||||
|
||||
|
||||
** Selection Sort
|
||||
|
||||
Runtime O(n^{2})
|
||||
|
||||
*** Python
|
||||
|
||||
#+begin_src python
|
||||
def selection_sort(arr):
|
||||
sorted_list = []
|
||||
for i in range(len(arr)):
|
||||
max = arr[0]
|
||||
for count, value in enumerate(arr):
|
||||
if value > max:
|
||||
max = value
|
||||
sorted_list.append(max)
|
||||
arr.remove(max)
|
||||
return sorted_list
|
||||
|
||||
selection_sort([2,1,5,3,4])
|
||||
#+end_src
|
||||
|
||||
*** OCaml
|
||||
|
||||
Really reinventing the wheel on this one...
|
||||
|
||||
#+begin_src ocaml
|
||||
let max_element = function
|
||||
| [] -> invalid_arg "empty list"
|
||||
| x::xs ->
|
||||
let rec f acc = function
|
||||
| [] -> acc
|
||||
| x::xs -> f (if x > acc then x else acc) xs
|
||||
in f x xs
|
||||
|
||||
let remove item list =
|
||||
let rec f acc item = function
|
||||
| [] -> List.rev acc
|
||||
| x::xs -> if item = x then (List.rev acc) @ xs else f (x::acc) item xs
|
||||
in f [] item list
|
||||
|
||||
let selection_sort list =
|
||||
let rec f acc = function
|
||||
| [] -> acc
|
||||
| xs ->
|
||||
let m = max xs
|
||||
in f (m::acc) (remove m xs)
|
||||
in f [] list
|
||||
#+end_src
|
||||
|
||||
** Quicksort
|
||||
|
||||
*** Python
|
||||
#+begin_src python
|
||||
import random
|
||||
|
||||
def quicksort(arr):
|
||||
if len(arr) < 2:
|
||||
return arr
|
||||
elif len(arr) == 2:
|
||||
if arr[0] > arr[1]:
|
||||
temp = arr[1]
|
||||
arr[1] = arr[0]
|
||||
arr[0] = temp
|
||||
return arr
|
||||
else:
|
||||
# Pick a random pivot
|
||||
index = random.randrange(0, len(arr))
|
||||
pivot = arr.pop(index)
|
||||
left = [x for x in arr if x <= pivot]
|
||||
right = [x for x in arr if x > pivot]
|
||||
return quicksort(left) + [pivot] + quicksort(right)
|
||||
#+end_src
|
||||
|
@ -126,6 +126,52 @@ Apparently you can do arithmetic on the Big Oh functions
|
||||
** 2.5 Efficiency
|
||||
|
||||
*** Selection Sort
|
||||
|
||||
**** OCaml
|
||||
|
||||
Really reinventing the wheel on this one...
|
||||
|
||||
#+begin_src ocaml
|
||||
let max_element = function
|
||||
| [] -> invalid_arg "empty list"
|
||||
| x::xs ->
|
||||
let rec f acc = function
|
||||
| [] -> acc
|
||||
| x::xs -> f (if x > acc then x else acc) xs
|
||||
in f x xs
|
||||
|
||||
let remove item list =
|
||||
let rec f acc item = function
|
||||
| [] -> List.rev acc
|
||||
| x::xs -> if item = x then (List.rev acc) @ xs else f (x::acc) item xs
|
||||
in f [] item list
|
||||
|
||||
let selection_sort list =
|
||||
let rec f acc = function
|
||||
| [] -> acc
|
||||
| xs ->
|
||||
let m = max xs
|
||||
in f (m::acc) (remove m xs)
|
||||
in f [] list
|
||||
#+end_src
|
||||
|
||||
**** Python
|
||||
|
||||
#+begin_src python
|
||||
def selection_sort(arr):
|
||||
sorted_list = []
|
||||
for i in range(len(arr)):
|
||||
max = arr[0]
|
||||
for count, value in enumerate(arr):
|
||||
if value > max:
|
||||
max = value
|
||||
sorted_list.append(max)
|
||||
arr.remove(max)
|
||||
return sorted_list
|
||||
|
||||
selection_sort([2,1,5,3,4])
|
||||
#+end_src
|
||||
|
||||
**** C
|
||||
|
||||
#+begin_src C :includes stdio.h
|
||||
@ -157,17 +203,6 @@ int nums[9] = { 2, 4, 9, 1, 3, 8, 5, 7, 6 };
|
||||
selection_sort(nums, 9);
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
| 2 | 4 | 9 | 1 | 3 | 8 | 5 | 7 | 6 | |
|
||||
| 1 | 4 | 9 | 2 | 3 | 8 | 5 | 7 | 6 | |
|
||||
| 1 | 2 | 9 | 4 | 3 | 8 | 5 | 7 | 6 | |
|
||||
| 1 | 2 | 3 | 4 | 9 | 8 | 5 | 7 | 6 | |
|
||||
| 1 | 2 | 3 | 4 | 9 | 8 | 5 | 7 | 6 | |
|
||||
| 1 | 2 | 3 | 4 | 5 | 8 | 9 | 7 | 6 | |
|
||||
| 1 | 2 | 3 | 4 | 5 | 6 | 9 | 7 | 8 | |
|
||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 8 | |
|
||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|
||||
|
||||
|
||||
*** Insertion Sort
|
||||
**** C
|
||||
@ -253,6 +288,71 @@ However, pointers require extra space for storing pointer fields
|
||||
*** Stacks
|
||||
/(PUSH, /POP/) LIFO, useful in executing recursive algorithms.
|
||||
|
||||
#+begin_src C :includes stdlib.h stdio.h stdbool.h
|
||||
typedef struct Node {
|
||||
struct Node* next;
|
||||
/* void *data; */
|
||||
int data;
|
||||
} Node;
|
||||
|
||||
typedef struct Stack {
|
||||
Node* top;
|
||||
int length;
|
||||
} Stack;
|
||||
|
||||
/* void stack_create(void* data) { */
|
||||
Stack *stack_create(int data) {
|
||||
Stack *stack = malloc(sizeof(Stack));
|
||||
Node *node = malloc(sizeof(Node));
|
||||
node->data = data;
|
||||
node->next = NULL;
|
||||
stack->top = node;
|
||||
stack->length = 1;
|
||||
return stack;
|
||||
}
|
||||
|
||||
int stack_pop(Stack *stack) {
|
||||
Node *top = stack->top;
|
||||
Node *next = top->next;
|
||||
if (stack->length > 0 && next != NULL) {
|
||||
stack->top = next;
|
||||
stack->length--;
|
||||
int value = top->data;
|
||||
free(top);
|
||||
return value;
|
||||
} else {
|
||||
// A better API design would be to return a bool and the int as a pointer
|
||||
// Although once we switch away from int and use void pointers, might not be needed
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* void stack_push(Stack *stack, void *data) { */
|
||||
void stack_push(Stack *stack, int data) {
|
||||
Node *node = malloc(sizeof(Node));
|
||||
Node *top = stack->top;
|
||||
node->data = data;
|
||||
node->next = top;
|
||||
stack->top = node;
|
||||
stack->length++;
|
||||
}
|
||||
|
||||
/* void* stack_peak(Stack *stack) { */
|
||||
int stack_peak(Stack *stack) {
|
||||
return stack->top->data;
|
||||
}
|
||||
|
||||
void stack_print(Stack *stack) {
|
||||
Node *current = stack->top;
|
||||
int i = 0;
|
||||
while (current != NULL) {
|
||||
printf("Stack at %d: %d\n", ++i, current->data);
|
||||
current = current->next;
|
||||
}
|
||||
printf("------------------\n");
|
||||
}
|
||||
#+end_src
|
||||
|
||||
*** Queues
|
||||
(/ENQUEUE/, /DEQUEUE/) FIFO, useful for breadth-first searches in graphs.
|
||||
|
||||
@ -786,6 +886,29 @@ new arrays to hold the new sorted elements. However, it becomes more challenging
|
||||
when doing it in place. This algorithm requires 3 pointers to keep track of the
|
||||
mid point, the iterator, and the high, then finish once mid passes h.
|
||||
|
||||
*** Python
|
||||
|
||||
#+begin_src python
|
||||
import random
|
||||
|
||||
def quicksort(arr):
|
||||
if len(arr) < 2:
|
||||
return arr
|
||||
elif len(arr) == 2:
|
||||
if arr[0] > arr[1]:
|
||||
temp = arr[1]
|
||||
arr[1] = arr[0]
|
||||
arr[0] = temp
|
||||
return arr
|
||||
else:
|
||||
# Pick a random pivot
|
||||
index = random.randrange(0, len(arr))
|
||||
pivot = arr.pop(index)
|
||||
left = [x for x in arr if x <= pivot]
|
||||
right = [x for x in arr if x > pivot]
|
||||
return quicksort(left) + [pivot] + quicksort(right)
|
||||
#+end_src
|
||||
|
||||
** 4.7 Distribution Sort: Bucketing
|
||||
|
||||
Two other sorting algorithms function similarly by subdividing the sorting
|
||||
@ -809,6 +932,21 @@ dealing with lazy sequences, where you search first by A[1], then A[2], A[4],
|
||||
A[8], A[16], and so forth. You can also use these sorts of bisections on square
|
||||
root problems, whatever those are.
|
||||
|
||||
Here's a simple binary search guessing game;
|
||||
|
||||
#+begin_src ocaml
|
||||
let binary_search items target =
|
||||
let rec f low high =
|
||||
match (high - low) / 2 + low with
|
||||
| mid when target = items.(mid) -> Some items.(mid)
|
||||
| mid when target < items.(mid) -> f low mid
|
||||
| mid when target > items.(mid) -> f mid high
|
||||
| _ -> None
|
||||
in f 0 (Array.length items);;
|
||||
|
||||
binary_search [|1;2;3;4;5|] 3;;
|
||||
#+end_src
|
||||
|
||||
** 4.10 Divide-and-Conquer
|
||||
|
||||
Algorithms that use this technique, Mergesort being the classic example, have
|
||||
|
Loading…
x
Reference in New Issue
Block a user