2.5 KiB
2.5 KiB
Notes & Exercises: Grokking Algorithms
Algorithms from the book
Recursive sum
OCaml
let rec sum_rec = function
| [] -> 0
| n::ns -> n + sum_rec ns;;
sum_rec [2;3;4;2;1];;
12
let sum_rec_tail list =
let rec f acc = function
| [] -> 0
| n::ns -> sum_rec (acc + n) ns
in f 0 list;;
sum_rec [2;3;4;2;1];;
12
Python
def sum_rec(arr):
if not arr:
return 0
else:
return arr[0] + sum_rec(arr[1:])
print(sum_rec([1,2,3]))
6
Binary Search
OCaml
let binary_search items target =
let rec f low high =
match (high - low) / 2 + low with
| mid when target = items.(mid) -> Some items.(mid)
| mid when target < items.(mid) -> f low mid
| mid when target > items.(mid) -> f mid high
| _ -> None
in f 0 (Array.length items);;
binary_search [|1;2;3;4;5|] 3;;
Selection Sort
Runtime O(n2)
Python
def selection_sort(arr):
sorted_list = []
for i in range(len(arr)):
max = arr[0]
for count, value in enumerate(arr):
if value > max:
max = value
sorted_list.append(max)
arr.remove(max)
return sorted_list
selection_sort([2,1,5,3,4])
OCaml
Really reinventing the wheel on this one…
let max_element = function
| [] -> invalid_arg "empty list"
| x::xs ->
let rec f acc = function
| [] -> acc
| x::xs -> f (if x > acc then x else acc) xs
in f x xs
let remove item list =
let rec f acc item = function
| [] -> List.rev acc
| x::xs -> if item = x then (List.rev acc) @ xs else f (x::acc) item xs
in f [] item list
let selection_sort list =
let rec f acc = function
| [] -> acc
| xs ->
let m = max xs
in f (m::acc) (remove m xs)
in f [] list
Quicksort
Python
import random
def quicksort(arr):
if len(arr) < 2:
return arr
elif len(arr) == 2:
if arr[0] > arr[1]:
temp = arr[1]
arr[1] = arr[0]
arr[0] = temp
return arr
else:
# Pick a random pivot
index = random.randrange(0, len(arr))
pivot = arr.pop(index)
left = [x for x in arr if x <= pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + [pivot] + quicksort(right)